Monday, June 14, 2010

Engineering Materials

Engineering Materials - Metals, Ceramics, Plastics, Composites

Selecting the "best" material is usually a difficult task, requiring tradeoffs between different material properties including:

1. General Physical Properties

2. Mechanical Properties

3. Thermal Properties

General Physical Properties

Density

Density is one of the most fundamental physical properties of any material. It is defined as the ratio of an objects mass to its volume. Because most designs are limited by either size and or weight density is an important consideration in many calculations.

Density is a function of the mass of the atoms making up the materials and the distance between them. Massive, closely packed atoms characterize high density materials such as Tungsten or Neptunium. In contrast light, relatively distant atoms compose low density materials such as Beryllium or Aluminum. Density on a macroscopic level is also a function of the microscopic structure of a material. A relatively dense material may be capable of forming a cellular structure such as a foam which can be nearly as strong and much less dense than the bulk material. Composites including natural constituents such as wood and bone, for example, generally rely on microscopic structure to achieve densities far lower than common monolithic materials.


Availability/Manufacturability

Availability and manufacturability requirements are often unseen limiting factors in materials selection. The importance of a material being available is obvious. Materials which are not available cannot be used. The importance of processibility is not always so obvious.

Any other desirable qualities are useless if a material cannot be processed into the shape required to perform its function. Most engineering materials in use today have well known substitutes which would perform better and often at lower cost but processes for forming, cutting, machining, joining, etc. are not available or commercially viable. There is often a period of time after a new material is introduced during which its application is severely limited while processing techniques are developed which facilitate its use.


Cost

A materials cost is also generally a limiting factor. While cost is universally recognized and perhaps the easiest of all properties to understand there are specific cost considerations for materials selection. Just as materials and their processing go hand in hand so do material costs and processing costs. Understanding the entire processing sequence is critical to accurately evaluating the true cost of a material.


Appearance

Because the appearance of many mechanical components seems fairly trivial it is also easy to overlook its importance in the marketing and commercial success of a product.


Mechanical Properties

The mechanical properties of a material describe how it will react to physical forces. Mechanical properties occur as a result of the physical properties inherent to each material, and are determined through a series of standardized mechanical tests.



Strength

Strength has several definitions depending on the material type and application. Before choosing a material based on its published or measured strength it is important to understand the manner in which strength is defined and how it is measured. When designing for strength, material class and mode of loading are important considerations.

For metals the most common measure of strength is the yield strength. For most polymers it is more convenient to measure the failure strength, the stress at the point where the stress strain curve becomes obviously non-linear. Strength, for ceramics however, is more difficult to define. Failure in ceramics is highly dependent on the mode of loading. The typical failure strength in compression is fifteen times the failure strength in tension. The more common reported value is the compressive failure strength.


Elastic limit

The elastic limit is the highest stress at which all deformation strains are fully recoverable. For most materials and applications this can be considered the practical limit to the maximum stress a component can withstand and still function as designed. Beyond the elastic limit permanent strains are likely to deform the material to the point where its function is impaired.


Proportional limit

The proportional limit is the highest stress at which stress is linearly proportional to strain. This is the same as the elastic limit for most materials. Some materials may show a slight deviation from proportionality while still under recoverable strain. In these cases the proportional limit is preferred as a maximum stress level because deformation becomes less predictable above it.


Yield Strength

The yield strength is the minimum stress which produces permanent plastic deformation. This is perhaps the most common material property reported for structural materials because of the ease and relative accuracy of its measurement. The yield strength is usually defined at a specific amount of plastic strain, or offset, which may vary by material and or specification. The offset is the amount that the stress-strain curve deviates from the linear elastic line. The most common offset for structural metals is 0.2%.


Ultimate Tensile Strength

The ultimate tensile strength is an engineering value calculated by dividing the maximum load on a material experienced during a tensile test by the initial cross section of the test sample. When viewed in light of the other tensile test data the ultimate tensile strength helps to provide a good indication of a material's toughness but is not by itself a useful design limit. Conversely this can be construed as the minimum stress that is necessary to ensure the failure of a material.


True Fracture Strength

The true fracture strength is the load at fracture divided by the cross sectional area of the sample. Like the ultimate tensile strength the true fracture strength can help an engineer to predict the behavior of the material but is not itself a practical strength limit. Because the tensile test seeks to standardize variables such as specimen geometry, strain rate and uniformity of stress it can be considered a kind of best case scenario of failure.


Ductility

Ductility is a measure of how much deformation or strain a material can withstand before breaking. The most common measure of ductility is the percentage of change in length of a tensile sample after breaking. This is generally reported as % El or percent elongation. The R.A. or reduction of area of the sample also gives some indication of ductility.


Toughness

Toughness describes a material's resistance to fracture. It is often expressed in terms of the amount of energy a material can absorb before fracture. Tough materials can absorb a considerable amount of energy before fracture while brittle materials absorb very little. Neither strong materials such as glass or very ductile materials such as taffy can absorb large amounts of energy before failure. Toughness is not a single property but rather a combination of strength and ductility.

The toughness of a material can be related to the total area under its stress-strain curve. A comparison of the relative magnitudes of the yield strength, ultimate tensile strength and percent elongation of different material will give a good indication of their relative toughness. Materials with high yield strength and high ductility have high toughness. Integrated stress-strain data is not readily available for most materials so other test methods have been devised to help quantify toughness. The most common test for toughness is the Charpy impact test.

In crystalline materials the toughness is strongly dependent on crystal structure. Face centered cubic materials are typically ductile while hexagonal close packed materials tend to be brittle. Body centered cubic materials often display dramatic variation in the mode of failure with temperature. In many materials the toughness is temperature dependent. Generally materials are more brittle at lower temperatures and more ductile at higher temperatures. The temperature at which the transition takes place is known as the DBTT, or ductile to brittle transition temperature. The DBTT is measured by performing a series of Charpy impact tests at various temperatures to determine the ranges of brittle and ductile behavior. Use of alloys below their transition temperature is avoided due to the risk of catastrophic failure.


Fatigue ratio

The dimensionless fatigue ratio f is the ratio of the stress required to cause failure after a specific number of cycles to the yield stress of a material. Fatigue tests are generally run through 107 or 108 cycles. A high fatigue ratio indicates materials which are more susceptible to crack growth during cyclic loading.


Loss coefficient

The loss coefficient is an other important material parameter in cyclic loading. It is the fraction of mechanical energy lost in a stress strain cycle. The loss coefficient for each material is a function of the frequency of the cycle. A high loss coefficient can be desirable for damping vibrations while a low loss coefficient transmits energy more efficiently. The loss coefficient is also an important factor in resisting fatigue failure. If the loss coefficient is too high, cyclic loading will dissipate energy into the material leading to fatigue failure.


Thermal Properties

Thermal conductivity

The thermal conductivity is the rate of heat transfer through a material in steady state. It is not easily measured, especially for materials with low conductivity but reliable data is readily available for most common materials.

Thermal diffusivity

The thermal diffusivity is a measure of the transient heat flow through a material.

Specific heat

The specific heat is a measure of the amount of energy required to change the temperature of a given mass of material. Specific heat is measured by calorimetry techniques and is usually reported both as CV, the specific heat measured at constant pressure, or CP, the specific heat measured at constant pressure.

Melting point

The melting point is the temperature at which a material goes from the solid to the liquid state at one atmosphere. The melting temperature is not usually a design criteria but it offers important clues to other material properties.

Glass transition temp

The glass transition temperature, or Tg is an important property of polymers. The glass transition temperature is a temperature range which marks a change in mechanical behavior. Above the glass transition temperature a polymer will behave like a ductile solid or highly viscous liquid. Below Tg the material will behave as a brittle solid. Depending on the desired properties materials may be used both above and below their glass transition temperature.

Thermal expansion coefficient

The thermal expansion coefficient is the amount a material will change in dimension with a change in temperature. It is the amount of strain due to thermal expansion per degree Kelvin expressed in units of K-1. For isotropic materials " is the same in all directions, anisotropic materials have separate "s reported for each direction which is different.

Thermal shock resistance

Thermal shock resistance is a measure of how large a change in temperature a material can withstand without damage. Thermal shock resistance is very important to most high temperature designs. Measurements of thermal shock resistance are highly subjective because if is extremely process dependent. Thermal shock resistance is a complicated function of heat transfer, geometry and material properties. The temperature range and the shape of the part play a key role in the material's ability to withstand thermal shock. Tests must be carefully designed to mimic anticipated service conditions to accurately asses the thermal shock resistance of a material.

Creep resistance

Creep is slow, temperature aided, time dependent deformation. Creep is typically a factor in materials above one third of their absolute melting temperature or two thirds of their glass transition temperature. Creep resistance is an important material property in high temperature design, but it is difficult to quantify with a single value. Creep response is a function of many material and external variables, including stress and temperature. Often other environmental factors such as oxidation or corrosion play a role in the fracture process.

Creep is plotted as strain vs. time. A typical creep curve shows three basic regimes. During stage I, the primary or transient stage, the curve begins at the initial strain, with a relatively high slope or strain rate which decreased throughout stage I until a steady state is reached. Stage II, the steady state stage, is generally the longest stage and represents most of the response. The strain rate again begins to increase in stage III and rupture at tR generally follows quickly.

Different applications call for different creep responses. In situations where long life is desired minimum creep rate is the most important material consideration. Testing through stage II should be sufficient for determining minimum creep rate. Is not necessary to proceed all the way to rupture. For this type of test the longer the test the more accurate the creep rate will be. Unfortunately practicality limits most creep tests to times shorter than would be desirable for high accuracy.

For short lived applications such as rocket nozzles the time to failure may be the only consideration. The main issue is whether or not the component fails, not the amount of deformation it may undergo. For this application creep tests may be run to completion but without recording any data but the time to rupture. In this case temperatures may be elevated above expected conditions to provide a margin of safety.

The main objective of a creep test is to study the effects of temperature and stress on the minimum creep rate and the time to rupture. Creep testing is usually run by placing a sample under a constant load at a fixed temperature. The data provided from a complete creep test at a specific temperature, T, and stress includes three creep constants: the dimensionless creep exponent, n, the activation energy Q, and A, a kinetic factor.

**************************************************************************

Please give your valuable suggestions to mworld


:)


**************************************************************************

Sensors: Pressure

Sensors: Pressure

Pressure Transducer

Pressure Transducer
Pressure Transducer - Motorola
Pressure sensor applications include flow (HVAC), height of a column of liquid, altitude, depth of a submerged object, position, sound (dbspl), barometric pressure, map, pressure drop, vacuum, volumetric displacement, and weight.

A transducer is simply a device (or medium) that converts energy from one form to another. The term is generally applied to devices that take physical phenomenon (pressure, temperature, humidity, flow, etc.) and convert it to an electrical signal.

Pressure transducers/sensors use a wide range of operating principles including:

1. Motion transducers use a bellows or Bourdon tube to convert pressure to an output. In one common type, the LVDT, an inductive member is driven into or out of a coil. It contains numerous pivots and linkages, making it nonlinear and susceptible to wear and vibration, but it has the advantage of inherently high output.

2. Pressure potentiometers have characteristics similar to those of LVDTs. In this case, a wiper is driven across a resistive coil, with output determined by wiper position. Compared to an LVDT, it has the added disadvantage of coil wear. If continuously operated in about the same pressure range, it may suddenly short out or produce severely nonlinear output. These sensors are rather inexpensive.

3. Silicon or "chip" transducers are widely used in high-volume applications. There are two types of silicon pressure sensors, capacitive and piezoresistive. Capacitive devices are much more stable, sensitive, and temperature resistant. Piezoresistive types are easier to make and cost less and therefore dominate the market.

4. Capacitance transducers use a flexing diaphragm to produce capacitance changes proportional to applied pressure. Because of their low price, a common application of these devices is in automobiles. One drawback is at normal hydraulic pressure their operation dictates a large diaphragm making them better suited to low-pressure systems.

5. Piezoresistive Sensors are available in both gage and absolute versions. The sensor typically consists of a Wheatstone bridge etched on a silicon diaphragm which outputs a voltage that is proportional to pressure.

6. Electropneumatic transducers are used to provide regulated air pressures for the control of process systems. Typically, electropneumatic transducers are of three basic types: voice-coil beam, voice-coil beam dampened by an oil dashpot, and torque motor.

* Voice-coil beam transducers use a nozzle/flapper arrangement to convert a small mechanical motion into a proportional pneumatic signal.

* Damped transducers operate in a similar manner except that the arm controlling flapper position is attached to a float suspended in silicone oil.

* Torque-motor transducers also have similar operating principles, except that a conventional torque motor replaces the voice-coil beam arrangement to position the flapper.

refered
**************************************************************************

Please give your valuable suggestions to mworld


:)


**************************************************************************

Sensors

Sensors: Sound



Sound

Microphones

Sound Sensor
Sound Sensor
A sensor for detecting sound is, in general, called a microphone. The microphone can be classified into several basic types including dynamic, electrostatic, and piezoelectric according to their conversion system.

The dynamic microphone still has big demands primarily in the music world, while the piezoelectric microphone is extensively used primarily for a microphone for low-frequency sound-level meters.

For measurement, electrostatic type (condenser) microphones are most popular because they can be downsized, have flat frequency responses over a wide frequency range, and provide markedly high stability as compared to other types of microphones.

The condenser microphones are available in two types: bias type and back electret type. The difference is whether the DC voltage is applied from the outside or permanently electrically polarized polymer film is used in place of applying voltage. In general, the bias type provides higher sensitivity and stability.

Sound Intensity Microphones



Sound intensity is a measure of the "flow of energy passing through a unit area per unit time" and its measurement unit is W/m2. The sound intensity microphone probe is designed to capture sound intensity together with the unit direction of flow as a vector quantity. This is achieved by incorporating more than one microphone in a probe to measure the sound energy flow. Conventional microphones can measure sound pressure (unit: Pa), which represents sound intensity at a specific place (one point), but can measure the direction of flow. The sound intensity microphone is therefore used for sound source probing and for measuring sound power.

Refered

**************************************************************************

Please give your valuable suggestions to mworld


:)


**************************************************************************

Velocity

Velocity

Handheld Tachometer

Linear Velocity Transducer - LVT

The LVT is based on the principle of magnetic induction and provide reliable velocity measurement in a linear motion. Passing a magnet through the coil form generates a voltage proportional to the magnets velocity and field strength. This output signal is used to carefully monitor component velocities in various applications.

Tachometer

The tachometer measures the angular velocity of a rotating shaft using one of two methods. The first type connects a DC generator (motor) to the shaft which produces a voltage proportional to the increase in shaft angular velocity. The second type utilizes a magnet with a pickup coil. As the magnet passes the coil a pulse is generated. The pulse magnitude and frequency are proportional to the angular speed.

Refered
**************************************************************************

Please give your valuable suggestions to mworld


:)


**************************************************************************

Sensors: Temperature

Sensors: Temperature

Temperature



Thermocouple
Temperature Sensors
Typical applications for temperature sensors include:


* HVAC - room, duct, and refrigerant equipment
* Motors - overload protection
* Electronic circuits - semiconductor protection
* Electronic assemblies - thermal management, temperature compensation
* Process control - temperature regulation
* Automotive - air and oil temperature
* Appliances - heating and cooling temperature

**************************************************************************
Sensor Types

1.
Thermocouples - Thermocouples are pairs of dissimilar metal alloy wires joined at least at one end, which generate a net thermoelectric voltage between the two ends according to the size of the temperature difference between the ends, the relative Seebeck coefficient of the wire pair and the uniformity of the wire's relative Seebeck coefficient.

2.
Thermistors - Thermistors (Resistance Thermometers) are instruments used to measure temperature by relating the change in resistance as a function of temperature.

3.
Radiation Pyrometer - A device to measure temperature by sensing the thermal radiation emitted from the object.

4.
Radiation Thermometers (Optical Pyrometers and Infrared Thermometers) - Optical Pyrometers are devices used to measure temperature of an object at high temperatures by sensing the brightness of an objects surface.

5.
Resistance Temperature Detectors (RTDs) - RTD's (Resistance Temperature Detectors) are precision, wire-wound resistors with a known temperature resistance characteristic. In operation, the RTD is usually wired into a specific type of circuit (wheatstone bridge). They are nearly linear over a wide range of temperatures and can be made small enough to have response times of a fraction of a second. They require an electrical current to produce a voltage drop across the sensor that can be then measured by a calibrated read-out device. The output of this circuit can be used to drive a meter which has been calibrated in temperature, or to operate a relay to sound an alarm or shut down the motor. The Platinum RTD is the most accurate and stable temperature detector from zero to about 500°C. It can measure temperatures up to 800°C. The resistance of the RTD changes as a function of absolute temperature, so it is categorized as one of the absolute temperature devices. (In contrast, the thermocouple cannot measure absolute temperature; it can only measure relative temperature.)

6.
Fiber Optic Temperature Sensors - Optical-based temperature sensors provide accurate and stable remote measurement of on-line temperatures in hazardous environments and in environments having high ambient electromagnetic fields without the need for calibration of individual probes and sensors.

Optical temperature sensor systems measure temperatures from -200C to 600C safely and accurately even in extremely hazardous, corrosive, and high electro-magnetic field environments. They are ideal for use in these conditions because their glass-based technology is inherently immune to electrical interference and corrosion. Since there is no need to recalibrate individual sensors, operator and technician safety is greatly enhanced as the need for their repeated exposure to field conditions is eliminated.

Probes are made from largely non-conducting and low thermal conductance material, resulting in high stability and low susceptibility to interference, and in increased operator safety. Optical cables also have a much higher information-carrying capacity and are far less subject to interference than electrical conductors.

7.
Silicon Temperature Sensors - Integrated circuit temperature sensors differ significantly from the other types in a couple of important ways. The first is operating temperature range. A temperature sensor IC can operate over the nominal IC temperature range of -55 C to +150 C. Some devices go beyond this range while others, because of package or cost constraints, operate over a narrower range. The second difference is functionality. A silicon temperature sensor is an integrated circuit, including extennsive signal processing circuitry within the same package as the sensor.

**************************************************************************
Refered


**************************************************************************

Please give your valuable suggestions to mworld


:)


**************************************************************************

Monday, June 7, 2010

Order-transfer-bunker-oil-0between-ships-Danish-territoria-waters



marine notes
:)


Click Below

Download This PDF Here !!


**************************************************************************

Please give your valuable suggestions to mworld


:)


**************************************************************************

BOTTOM STRUCTURE



marine notes
:)


Click Below

Download This PDF Here !!


**************************************************************************

Please give your valuable suggestions to mworld


:)


**************************************************************************

FPSO



marine notes :)


Click Below

Download This PDF Here !!


**************************************************************************

Please give your valuable suggestions to mworld


:)


**************************************************************************

CHEMISTRY IN FIRE FIGHTING



marine notes
:)


Click Below

Download This PDF Here !!


**************************************************************************

Please give your valuable suggestions to mworld


:)


**************************************************************************

Apply safe working practices



marine notes :)


Click Below

Download This PDF Here !!

**************************************************************************

Please give your valuable suggestions to mworld


:)


**************************************************************************

STORAGE BATTERY MAINTENANCE AND PRINCIPLES



marine notes :)


Click Below

Download This PDF Here !!

**********************************************************************************

Please give your valuable suggestions to mworld


:)


**********************************************************************************

Sunday, June 6, 2010

Damaged containers

Damaged containers



**********************************************************************************

Please give your valuable suggestions to mworld :)

**********************************************************************************

Saturday, June 5, 2010

ship engine pics

Here is collection of some ships stills which i took at ship yard :

slide show ::


Flash For you



ship at goa

**********************************************************************************

Please give your valuable suggestions to mworld

:)

**********************************************************************************